

Bugwarrior

bugwarrior is a command line utility for updating your local taskwarrior [http://taskwarrior.org] database from your forge issue trackers.

Build Status

	Branch

	Status

	master

	[image: Build Status - master branch] [http://travis-ci.org/#!/ralphbean/bugwarrior]

	develop

	[image: Build Status - develop branch] [http://travis-ci.org/#!/ralphbean/bugwarrior]

Contents

	Getting bugwarrior
	Requirements

	Installing from the Python Package Index

	Installing from Source

	Installing from Distribution Packages

	How to use
	Cron

	systemd timer

	Exporting a list of UDAs

	How to Configure
	Common Service Configuration Options

	Field Templates

	Password Management

	Hooks

	Notifications

	Configuration files

	Environment Variables

	Supported Services
	ActiveCollab 4

	ActiveCollab 2

	Bitbucket

	Debian Bug Tracking System (BTS)

	Bugzilla

	Gerrit

	Github

	Gitlab

	Gmail

	Jira

	Megaplan

	Pagure

	Phabricator

	Redmine

	Taiga

	Teamlab

	Trac

	Trello

	VersionOne

	YouTrack

	Example Configuration

	How to Contribute
	Setting up your development environment

	Making a pull request

	Works in progress

	FAQ
	Can bugwarrior support <some issue tracking system>?

Indices and tables

	Index

	Module Index

	Search Page

Getting bugwarrior

Requirements

To use bugwarrior, you need python 2.7 and taskwarrior. Upon installation, the
setup script will automatically download and install missing python
dependencies.

Note that some of those dependencies have a C extension module (e.g. the
cryptography package). If those packages are not yet present on your
system, the setup script will try to build them locally, for which you will
need a C compiler (e.g. gcc) and the necessary header files (python and,
for the cryptography package, openssl).
A convenient way to install those is to use your usual package manager
(dnf, yum, apt, etc).
Header files are installed from development packages (e.g. python-devel
and openssl-devel on Fedora or python-dev libssl-dev on Debian).

Installing from the Python Package Index

Installing from https://pypi.python.org/pypi/bugwarrior is easy with
pip:

$ pip install bugwarrior

By default, bugwarrior will be installed with support for the following
services: Bitbucket, Github, Gitlab, Pagure, Phabricator, Redmine, Teamlab, and
Versionone. There is optional support for Jira, Megaplan.ru, Active Collab,
Debian BTS, Trac, Bugzilla, and but those require extra dependencies that are
installed by specifying bugwarrior[service] in the commands above. For
example, if you want to use bugwarrior with Jira:

$ pip install "bugwarrior[jira]"

The following extra dependency sets are available:

	keyring (See also linux installation instructions [https://github.com/jaraco/keyring#linux].)

	jira

	megaplan

	activecollab

	bts

	trac

	bugzilla

	gmail

Installing from Source

You can find the source on github at http://github.com/ralphbean/bugwarrior.
Either fork/clone if you plan to do development on bugwarrior, or you can simply
download the latest tarball:

$ wget https://github.com/ralphbean/bugwarrior/tarball/master -O bugwarrior-latest.tar.gz
$ tar -xzvf bugwarrior-latest.tar.gz
$ cd ralphbean-bugwarrior-*
$ python setup.py install

Installing from Distribution Packages

bugwarrior has been packaged for Fedora. You can install it with the standard
dnf (yum) package management tools as follows:

$ sudo dnf install bugwarrior

How to use

Just run bugwarrior-pull.

Cron

It’s ideal to create a cron task like:

*/15 * * * * /usr/bin/bugwarrior-pull

Bugwarrior can emit desktop notifications when it adds or completes issues
to and from your local ~/.task/ db. If your bugwarriorrc file has
notifications turned on, you’ll also need to tell cron which display to use by
adding the following to your crontab:

DISPLAY=:0
*/15 * * * * /usr/bin/bugwarrior-pull

systemd timer

If you would prefer to use a systemd timer to run bugwarrior-pull on a
schedule, you can create the following two files:

$ cat ~/.config/systemd/user/bugwarrior-pull.service
[Unit]
Description=bugwarrior-pull

[Service]
Environment="DISPLAY=:0"
ExecStart=/usr/bin/bugwarrior-pull
Type=oneshot

[Install]
WantedBy=default.target
$ cat ~/.config/systemd/user/bugwarrior-pull.timer
[Unit]
Description=Run bugwarrior-pull hourly and on boot

[Timer]
OnBootSec=15min
OnUnitActiveSec=1h

[Install]
WantedBy=timers.target

Once those files are in place, you can start and enable the timer:

$ systemctl --user enable bugwarrior-pull.timer
$ systemctl --user start bugwarrior-pull.timer

Exporting a list of UDAs

Most services define a set of UDAs in which bugwarrior store extra information
about the incoming ticket. Usually, this includes things like the title
of the ticket and its URL, but some services provide an extensive amount of
metadata. See each service’s documentation for more information.

For using this data in reports, it is recommended that you add these UDA
definitions to your taskrc file. You can generate your list of
UDA definitions by running the following command:

bugwarrior-uda

You can add those lines verbatim to your taskrc file if you would like
Taskwarrior to know the human-readable name and data type for the defined
UDAs.

Note

Not adding those lines to your taskrc file will have no negative
effects aside from Taskwarrior not knowing the human-readable name for the
field, but depending on what version of Taskwarrior you are using, it
may prevent you from changing the values of those fields or using them
in filter expressions.

How to Configure

First, add a file named .config/bugwarrior/bugwarriorrc to your home
folder. This file must include at least a [general] section including the
following option:

	targets: A comma-separated list of other section names to use
as task sources.

Optional options include:

	taskrc: Specify which TaskRC configuration file to use. By default,
will use the system default (usually ~/.taskrc).

	shorten: Set to True to shorten links.

	inline_links: When False, links are appended as an annotation.
Defaults to True.

	annotation_links: When True will include a link to the ticket as an
annotation. Defaults to False.

	annotation_comments: When False skips putting issue comments into
annotations. Defaults to True.

	legacy_matching: Set to False to instruct Bugwarrior to match
issues using only the issue’s unique identifiers (rather than matching
on description).

	log.level: Set to one of DEBUG, INFO, WARNING, ERROR,
CRITICAL, or DISABLED to control the logging verbosity. By
default, this is set to DEBUG.

	log.file: Set to the path at which you would like logging messages
written. By default, logging messages will be written to stderr.

	annotation_length: Import maximally this number of characters
of incoming annotations. Default: 45.

	description_length: Use maximally this number of characters in the
description. Default: 35.

	merge_annotations: If False, bugwarrior won’t bother with adding
annotations to your tasks at all. Default: True.

	merge_tags: If False, bugwarrior won’t bother with adding
tags to your tasks at all. Default: True.

	static_fields: A comma separated list of attributes that shouldn’t be
updated by bugwarrior. Use for values that you want to tune manually.
Default: priority.

In addition to the [general] section, sections may be named
[flavor.myflavor] and may be selected using the --flavor option to
bugwarrior-pull. This section will then be used rather than the
[general] section.

A more-detailed example configuration can be found at
Example Configuration.

Common Service Configuration Options

All services support common configuration options in addition
to their service-specific features.
These configuration options are meant to be prefixed with the service name,
e.g. github.add_tags, or gitlab.default_priority.

The following options are supported:

	SERVICE.only_if_assigned: If set to a username, only import issues
assigned to the specified user.

	SERVICE.also_unassigned: If set to True and only_if_assigned is
set, then also create tasks for issues that are not assigned to anybody.
Defaults to False.

	SERVICE.default_priority: Assign this priority (‘L’, ‘M’, or ‘H’) to
newly-imported issues. Defaults to M.

	SERVICE.add_tags: A comma-separated list of tags to add to an issue. In
most cases, plain strings will suffice, but you can also specify
templates. See the section Field Templates for more information.

Field Templates

By default, Bugwarrior will import issues with a fairly verbose description
template looking something like this:

(BW)Issue#10 - Fix perpetual motion machine .. http://media.giphy.com/media/LldEzRPqyo2Yg/giphy.gif

but depending upon your workflow, the information presented may not be
useful to you.

To help users build descriptions that suit their needs, all services allow
one to specify a SERVICE.description_template configuration option, in
which one can enter a one-line Jinja template. The context available includes
all Taskwarrior fields and all UDAs (see section named ‘Provided UDA Fields’
for each service) defined for the relevant service.

Note

Jinja templates can be very complex. For more details about
Jinja templates, please consult
Jinja’s Template Documentation [http://jinja.pocoo.org/docs/templates/].

For example, to pull-in Github issues assigned to
@ralphbean [https://github.com/ralphbean], setting the issue description
such that it is composed of only the Github issue number and title, you could
create a service entry like this:

[ralphs_github_account]
service = github
github.username = ralphbean
github.description_template = {{githubnumber}}: {{githubtitle}}

You can also use this tool for altering the generated value of any other
Taskwarrior record field by using the same kind of template.

Uppercasing the project name for imported issues:

SERVICE.project_template = {{project|upper}}

You can also use this feature to override the generated value of any field.
This example causes imported issues to be assigned to the ‘Office’ project
regardless of what project was assigned by the service itself:

SERVICE.project_template = Office

Password Management

You need not store your password in plain text in your bugwarriorrc file;
you can enter the following values to control where to gather your password
from:

	password = @oracle:use_keyring

	Retrieve a password from the system keyring. The bugwarrior-vault
command line tool can be used to manage your passwords as stored in your
keyring (say to reset them or clear them). Extra dependencies must be
installed with pip install bugwarrior[keyring] to enable this feature.

	password = @oracle:ask_password

	Ask for a password at runtime.

	password = @oracle:eval:<command>

	Use the output of <command> as the password. For instance, to integrate
bugwarrior with the password manager pass [https://www.passwordstore.org/]
you can use @oracle:eval:pass my/password.

Hooks

Use hooks to run commands prior to importing from bugwarrior-pull.
bugwarrior-pull will run the commands in the order that they are specified
below.

To use hooks, add a [hooks] section to your configuration, mapping
the hook you’d like to use with a comma-separated list of scripts to execute.

[hooks]
pre_import = /home/someuser/backup.sh, /home/someuser/sometask.sh

Hook options:

	pre_import: The pre_import hook is invoked after all issues have been pulled
from remote sources, but before they are synced to the TW db. If your
pre_import script has a non-zero exit code, the bugwarrior-pull command will
exit early.

Notifications

Add a [notifications] section to your configuration to receive notifications
when a bugwarrior pull runs, and when issues are created, updated, or deleted
by bugwarrior-pull:

[notifications]
notifications = True
backend = growlnotify
finished_querying_sticky = False
task_crud_sticky = True
only_on_new_tasks = True

Backend options:

	Backend Name

	Operating System

	Required Python Modules

	growlnotify

	MacOS X

	gntp

	gobject

	Linux

	gobject

Note

The finished_querying_sticky and task_crud_sticky options
have no effect if you are using a notification backend other than
growlnotify.

Configuration files

bugwarrior will look at the following paths and read its configuration from the
first existing file in this order:

	~/.config/bugwarrior/bugwarriorrc

	~/.bugwarriorrc

	/etc/xdg/bugwarrior/bugwarriorrc

The default paths can be altered using the environment variables
BUGWARRIORRC, XDG_CONFIG_HOME and
XDG_CONFIG_DIRS.

Environment Variables

	
BUGWARRIORRC

	

This overrides the default RC file.

	
XDG_CONFIG_HOME

	

By default, bugwarrior looks for a configuration file named
$XDG_CONFIG_HOME/bugwarrior/bugwarriorrc. If $XDG_CONFIG_HOME is
either not set or empty, a default equal to $HOME/.config is used.

	
XDG_CONFIG_DIRS

	

If it can’t find a user-specific configuration file (either
$XDG_CONFIG_HOME/bugwarrior/bugwarriorrc or $HOME/.bugwarriorrc),
bugwarrior looks through the directories in
$XDG_CONFIG_DIRS for a configuration file named
bugwarrior/bugwarriorrc.
The directories in $XDG_CONFIG_DIRS should be separated with a colon ‘:’.
If $XDG_CONFIG_DIRS is either not set or empty, a value equal to
/etc/xdg is used.

Supported Services

Bugwarrior currently supports the following services:

	ActiveCollab 4
	Additional Requirements

	Instructions

	Example Service

	Provided UDA Fields

	ActiveCollab 2
	Instructions

	Example Service

	Provided UDA Fields

	Bitbucket
	Example Service

	Service Features
	Include and Exclude Certain Repositories

	Filter Merge Requests

	Provided UDA Fields

	Debian Bug Tracking System (BTS)
	Additional Requirements

	Example Service

	Service Features
	Include all bugs for packages

	Ultimate Debian Database (UDD) Bugs Search

	Excluding bugs marked pending

	Excluding sponsored and NMU’d packages

	Excluding packages explicitly

	Provided UDA Fields

	Bugzilla
	Additional Dependencies

	Example Service

	Provided UDA Fields

	Gerrit
	Example Service

	Provided UDA Fields

	Github
	Example Service

	Service Features
	Repo Owner

	Include and Exclude Certain Repositories

	Import Labels as Tags

	Filter Pull Requests

	Get involved issues

	Queries

	GitHub Enterprise Instance

	Provided UDA Fields

	Gitlab
	Example Service

	Service Features
	Include and Exclude Certain Repositories
	Filtering Repositories with Regular Expressions

	Import Labels as Tags

	Include Merge Requests

	Include Todo Items

	Include Only One Author

	Use HTTP

	Do Not Verify SSL Certificate

	Provided UDA Fields

	Gmail
	Additional Dependencies

	Client Secret

	Example Service

	Authentication

	Provided UDA Fields

	Jira
	Additional Requirements

	Example Service

	Service Features
	Specify the Query to Use for Gathering Issues

	Jira v4 Support

	Do Not Verify SSL Certificate

	Import Labels and Sprints as Tags

	Kerberos authentication

	Provided UDA Fields

	Megaplan
	Additional Requirements

	Example Service

	Provided UDA Fields

	Pagure
	Example Service

	Service Features
	Include and Exclude Certain Repositories

	Import Labels as Tags

	Provided UDA Fields

	Phabricator
	Additional Requirements

	Example Service

	Service Features

	Provided UDA Fields

	Redmine
	Example Service

	Provided UDA Fields

	Taiga
	Example Service

	Service Features

	Provided UDA Fields

	Teamlab
	Example Service

	Provided UDA Fields

	Trac
	Additional Dependencies

	Example Service

	Service Features

	Provided UDA Fields

	Trello
	Options

	Example Service

	Service Features
	Include and Exclude Certain Lists

	Import Labels as Tags

	Provided UDA Fields

	VersionOne
	Additional Requirements

	Example Service

	Service Features
	Restrict Task Imports to a Specific Timebox (Sprint)

	Set a Global Project Name

	Set the Timezone Used for Due Dates

	Provided UDA Fields

	YouTrack
	Example Service

	Service Features
	Customize the YouTrack Connection

	Specify the Query to Use for Gathering Issues

	Import Issue Tags

	Provided UDA Fields

ActiveCollab 4

You can import tasks from your activeCollab 4.x instance using
the activecollab service name.

Additional Requirements

Install the following packages using pip:

	pypandoc

	pyac

Instructions

Obtain your user ID and API url by logging in, clicking on your avatar on
the lower left-hand of the page. When on that page, look at the URL. The
number that appears after “/user/” is your user ID.

On the same page, go to Options and API Subscriptions. Generate a read-only
API key and add that to your bugwarriorrc file.

Bugwarrior will gather tasks and subtasks returned from the my-tasks API call.
Additional API calls will be made to gather comments associated with each task.

Note

Use of the ActiveCollab service requires that the following additional
python modules be installed.

	pypandoc [https://github.com/bebraw/pypandoc]

	pyac [https://github.com/kostajh/pyac]

Example Service

Here’s an example of an activecollab target.
This is only valid for activeCollab 4.x and greater,
see ActiveCollab 2 for activeCollab2.x.

[my_bug_tracker]
service = activecollab
activecollab.url = https://ac.example.org/api.php
activecollab.key = your-api-key
activecollab.user_id = 15

The above example is the minimum required to import issues from
ActiveCollab 4. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Provided UDA Fields

	Field Name

	Description

	Type

	acbody

	Body

	Text (string)

	accreatedbyname

	Created By Name

	Text (string)

	accreatedon

	Created On

	Date & Time

	acid

	ID

	Text (string)

	acname

	Name

	Text (string)

	acpermalink

	Permalink

	Text (string)

	acprojectid

	Project ID

	Text (string)

	actaskid

	Task ID

	Text (string)

	actype

	Task Type

	Text (string)

	acestimatedtime

	Estimated Time

	Text (numeric)

	actrackedtime

	Tracked Time

	Text (numeric)

	acmilestone

	Milestone

	Text (string)

ActiveCollab 2

You can import tasks from your ActiveCollab2 instance using
the activecollab2 service name.

Instructions

You can obtain your user ID and API url by logging into ActiveCollab and
clicking on “Profile” and then “API Settings”. When on that page, look
at the URL. The integer that appears after “/user/” is your user ID.

Projects should be entered in a comma-separated list, with the project
id as the key and the name you’d like to use for the project in Taskwarrior
entered as the value. For example, if the project ID is 8 and the project’s
name in ActiveCollab is “Amazing Website” then you might enter 8:amazing_website

Note that due to limitations in the ActiveCollab API, there is no simple way
to get a list of all tasks you are responsible for in AC. Instead you need to
look at each ticket that you are subscribed to and check to see if your
user ID is responsible for the ticket/task. What this means is that if you
have 5 projects you want to query and each project has 20 tickets, you’ll
make 100 API requests each time you run bugwarrior-pull.

Example Service

Here’s an example of an activecollab2 target. Note that this will only work
with ActiveCollab 2.x - see above for 3.x and greater.

[my_bug_tracker]
services = activecollab2
activecollab2.url = http://ac.example.org/api.php
activecollab2.key = your-api-key
activecollab2.user_id = 15
activecollab2.projects = 1:first_project, 5:another_project

The above example is the minimum required to import issues from
ActiveCollab 2. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Provided UDA Fields

	Field Name

	Description

	Type

	ac2body

	Body

	Text (string)

	ac2createdbyid

	Created By

	Text (string)

	ac2createdon

	Created On

	Date & Time

	ac2name

	Name

	Text (string)

	ac2permalink

	Permalink

	Text (string)

	ac2projectid

	Project ID

	Text (string)

	ac2ticketid

	Ticket ID

	Text (string)

	ac2type

	Task Type

	Text (string)

Bitbucket

You can import tasks from your Bitbucket instance using
the bitbucket service name.

Example Service

Here’s an example of a Bitbucket target:

[my_issue_tracker]
service = bitbucket
bitbucket.username = ralphbean
bitbucket.login = ralphbean
bitbucket.password = mypassword

The above example is the minimum required to import issues from
Bitbucket. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Note that both bitbucket.username and bitbucket.login are required and can be
set to different values. bitbucket.login is used to specify what account
bugwarrior should use to login to bitbucket. bitbucket.username indicates which
repositories should be scraped. For instance, I always have bitbucket.login
set to ralphbean (my account). But I have some targets with
bitbucket.username pointed at organizations or other users to watch issues
there.

As an alternative to password authentication, there is OAuth. To get a key and secret,
go to the “OAuth” section of your profile settings and click “Add consumer”. Set the
“Callback URL” to https://localhost/ and set the appropriate permissions. Then
assign your consumer’s credentials to bitbucket.key and bitbucket.secret. Note
that you will have to provide a password (only) the first time you pull, so you may
want to set bitbucket.password = @oracle:ask_password and run
bugwarrior-pull --interactive on your next pull.

Service Features

Include and Exclude Certain Repositories

If you happen to be working with a large number of projects, you
may want to pull issues from only a subset of your repositories. To
do that, you can use the bitbucket.include_repos option.

For example, if you would like to only pull-in issues from
your project_foo and project_fox repositories, you could add
this line to your service configuration:

bitbucket.include_repos = project_foo,project_fox

Alternatively, if you have a particularly noisy repository, you can
instead choose to import all issues excepting it using the
bitbucket.exclude_repos configuration option.

In this example, noisy_repository is the repository you would
not like issues created for:

bitbucket.exclude_repos = noisy_repository

Please note that the API returns all lowercase names regardless of
the case of the repository in the web interface.

Filter Merge Requests

Although you can filter issues using Common Service Configuration Options,
pull requests are not filtered by default. You can filter pull requests
by adding the following configuration option:

bitbucket.filter_merge_requests = True

Provided UDA Fields

	Field Name

	Description

	Type

	bitbucketid

	Issue ID

	Text (string)

	bitbuckettitle

	Title

	Text (string)

	bitbucketurl

	URL

	Text (string)

Debian Bug Tracking System (BTS)

You can import tasks from the Debian Bug Tracking System (BTS) using
the bts service name. Debian’s bugs are public and no authentication
information is required by bugwarrior for this service.

Additional Requirements

You will need to install the following additional packages via pip:

	PySimpleSOAP

	python-debianbts

Note

If you have installed the Debian package for bugwarrior, this
dependency will already be satisfied.

Example Service

Here’s an example of a Debian BTS target:

[debian_bts]
service = bts
bts.email = username@debian.org

The above example is the minimum required to import issues from
the Debian BTS. You can also feel free to use any of the configuration options
described in Common Service Configuration Options or described in Service
Features below.

Service Features

Include all bugs for packages

If you would like more bugs than just those you are the owner of, you can specify
the bts.packages option.

For example if you wanted to include bugs on the hello package, you can add
this line to your service configuration:

bts.packages = hello

More packages can be specified seperated by commas.

Ultimate Debian Database (UDD) Bugs Search

If you maintain a large number of packages and you wish to include bugs from all
packages where you are listed as a Maintainer or an Uploader in the Debian archive,
you can enable the use of the UDD Bugs Search [https://udd.debian.org/bugs/].

This will peform a search and include the bugs from the result. To enable this
feature, you can add this line to your service configuration:

bts.udd = True

Excluding bugs marked pending

Debian bugs are not considered closed until the fixed package is present in the
Debian archive. Bugs do cease to be outstanding tasks however as soon as you have
completed the work, and so it can be useful to exclude bugs that you have marked
with the pending tag in the BTS.

This is the default behaviour, but if you feel you would like to include bugs that
are marked as pending in the BTS, you can disable this by adding this line to your
service configuration:

bts.ignore_pending = False

Excluding sponsored and NMU’d packages

If you maintain an even larger number of packages, you may wish to exclude some
packages.

You can exclude packages that you have sponsored or have uploaded as a
non-maintainer upload or team upload by adding the following line to your
service configuration:

bts.udd_ignore_sponsor = True

Note

This will only affect the bugs returned by the UDD bugs search service
and will not exclude bugs that are discovered due to ownership or due
to packages explicitly specified in the service configuration.

Excluding packages explicitly

If you would like to exclude a particularly noisy package, that is perhaps team
maintained, or a package that you have orphaned and no longer have interest in but
are still listed as Maintainer or Uploader in stable suites, you can explicitly
ignore bugs based on their binary or source package names. To do this add one
of the following lines to your service configuration:

bts.ignore_pkg = hello,anarchism
bts.ignore_src = linux

Note

The src: prefix that is commonly seen in the Debian BTS interface
is not required when specifying source packages to exclude.

Provided UDA Fields

	Field Name

	Description

	Type

	btsnumber

	Bug Number

	Text (string)

	btsurl

	bugs.d.o URL

	Text (string)

	btssubject

	Subject

	Text (string)

	btssource

	Source Package

	Text (string)

	btspackage

	Binary Package

	Text (string)

	btsforwarded

	Forwarded URL

	Text (string)

	btsstatus

	Status

	Text (string)

Bugzilla

You can import tasks from your Bz instance using
the bugzilla service name.

Additional Dependencies

Install packages needed for Bugzilla support with:

pip install bugwarrior[bugzilla]

Example Service

Here’s an example of a bugzilla target.

This will scrape every ticket that:

	Is not closed and

	rbean@redhat.com is either the owner, reporter or is cc’d on the issue.

Bugzilla instances can be quite different from one another so use this
with caution and please report bugs so we can
make bugwarrior support more robust!

[my_issue_tracker]
service = bugzilla
bugzilla.base_uri = bugzilla.redhat.com
bugzilla.username = rbean@redhat.com
bugzilla.password = OMG_LULZ

Alternately, if you are using a version of python-bugzilla newer than 2.1.0,
you can specify an API key instead of a password. Note that the username is
still required in this case, in order to identify bugs belonging to you.

bugzilla.api_key = 4f4d475f4c554c5a4f4d475f4c554c5a

The above example is the minimum required to import issues from
Bugzilla. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.
Note, however, that the filtering options, including only_if_assigned
and also_unassigned, do not work

There is an option to ignore bugs that you are only cc’d on:

bugzilla.ignore_cc = True

But this will continue to include bugs that you reported, regardless of
whether they are assigned to you.

If your bugzilla “actionable” bugs only include ON_QA, FAILS_QA, PASSES_QA, and POST:

bugzilla.open_statuses = ON_QA,FAILS_QA,PASSES_QA,POST

This won’t create tasks for bugs in other states. The default open statuses:
“NEW,ASSIGNED,NEEDINFO,ON_DEV,MODIFIED,POST,REOPENED,ON_QA,FAILS_QA,PASSES_QA”

If you’re on a more recent Bugzilla install, the NEEDINFO status no longer
exists, and has been replaced by the “needinfo?” flag. Set
“bugzilla.include_needinfos” to “True” to have taskwarrior also add bugs where
information is requested of you. The “bugzillaneedinfo” UDA will be filled in
with the date the needinfo was set.

To see all your needinfo bugs, you can use “task bugzillaneedinfo.any: list”.

If the filtering options are not sufficient to find the set of bugs you’d like,
you can tell Bugwarrior exactly which bugs to sync by pasting a full query URL
from your browser into the bugzilla.query_url option:

bugzilla.query_url = https://bugzilla.mozilla.org/query.cgi?bug_status=ASSIGNED&email1=myname%40mozilla.com&emailassigned_to1=1&emailtype1=exact

Provided UDA Fields

	Field Name

	Description

	Type

	bugzillasummary

	Summary

	Text (string)

	bugzillaurl

	URL

	Text (string)

	bugzillabugid

	Bug ID

	Numeric (integer)

	bugzillastatus

	Bugzilla Status

	Text (string)

	bugzillaneedinfo

	Needinfo

	Date

Gerrit

You can import code reviews from a Gerrit instance using the gerrit service name.

Example Service

Here’s an example of a gerrit project:

[my_issue_tracker]
service = gerrit
gerrit.base_uri = https://yourhomebase.xyz/gerrit/
gerrit.username = your_username
gerrit.password = your_http_digest_password

The above example is the minimum required to import issues from Gerrit.

Note that the password is typically not your normal login password. Go to
the “HTTP Password” section in your account settings to generate/retrieve this
password.

You can also pass an optional gerrit.ssl_ca_path option which will use an
alternative certificate authority to verify the connection.

You can also feel free to use any of the configuration options described in
Common Service Configuration Options.

Provided UDA Fields

	Field Name

	Description

	Type

	gerritid

	Issue ID

	Text (string)

	gerritsummary

	Summary

	Text (string)

	gerriturl

	URL

	Text (string)

The Gerrit service provides a limited set of UDAs. If you have need for some
other values not present here, please file a request (there’s lots of metadata
in there that we could expose).

Github

You can import tasks from your Github instance using
the github service name.

Example Service

Here’s an example of a Github target:

[my_issue_tracker]
service = github
github.login = ralphbean
github.password = OMG_LULZ
github.username = ralphbean

The above example is the minimum required to import issues from
Github. You can also feel free to use any of the
configuration options described in Common Service Configuration Options
or described in Service Features below.

github.login is used to specify what account bugwarrior should use to login
to github, combined with github.password.

If two-factor authentication is used, github.token must be given rather
than github.password. To get a token, go to the “Personal access tokens” section of
your profile settings. Only the public_repo scope is required, but access
to private repos can be gained with repo as well.

Service Features

Repo Owner

github.username indicates which repositories should be scraped. For
instance, I always have github.login set to ralphbean (my account). But I
have some targets with github.username pointed at organizations or other
users to watch issues there. This parameter is required unless
github.query is provided.

Include and Exclude Certain Repositories

By default, issues from all repos belonging to github.username are
included. To turn this off, set:

github.include_user_repos = False

If you happen to be working with a large number of projects, you
may want to pull issues from only a subset of your repositories. To
do that, you can use the github.include_repos option.

For example, if you would like to only pull-in issues from
your project_foo and project_fox repositories, you could add
this line to your service configuration:

github.include_repos = project_foo,project_fox

Alternatively, if you have a particularly noisy repository, you can
instead choose to import all issues excepting it using the
github.exclude_repos configuration option.

In this example, noisy_repository is the repository you would
not like issues created for:

github.exclude_repos = noisy_repository

Import Labels as Tags

The Github issue tracker allows you to attach labels to issues; to
use those labels as tags, you can use the github.import_labels_as_tags
option:

github.import_labels_as_tags = True

Also, if you would like to control how these labels are created, you can
specify a template used for converting the Github label into a Taskwarrior
tag.

For example, to prefix all incoming labels with the string ‘github’ (perhaps
to differentiate them from any existing tags you might have), you could
add the following configuration option:

github.label_template = github_{{label}}

In addition to the context variable {{label}}, you also have access
to all fields on the Taskwarrior task if needed.

Note

See Field Templates for more details regarding how templates
are processed.

Filter Pull Requests

Although you can filter issues using Common Service Configuration Options,
pull requests are not filtered by default. You can filter pull requests
by adding the following configuration option:

github.filter_pull_requests = True

Get involved issues

By default, bugwarrior pulls all issues across owned and member repositories
assigned to the authenticated user. To disable this behavior, use:

github.include_user_issues = False

Instead of fetching issues and pull requests based on {{username}}’s owned
repositories, you may instead get those that {{username}} is involved in.
This includes all issues and pull requests where the user is the author, the
assignee, mentioned in, or has commented on. To do so, add the following
configuration option:

github.involved_issues = True

Queries

If you want to write your own github query, as described at https://help.github.com/articles/searching-issues/:

github.query = assignee:octocat is:open

Note that this search covers both issues and pull requests, which github treats
as a special kind of issue.

To disable the pre-defined queries described above and synchronize only the
issues matched by the query, set:

github.include_user_issues = False
github.include_user_repos = False

GitHub Enterprise Instance

If you’re using GitHub Enterprise, the on-premises version of GitHub, you can
point bugwarrior to it with the github.host configuration option. E.g.:

github.host = github.acme.biz

Provided UDA Fields

	Field Name

	Description

	Type

	githubbody

	Body

	Text (string)

	githubcreatedon

	Created

	Date & Time

	githubmilestone

	Milestone

	Text (string)

	githubnumber

	Issue/PR #

	Numeric

	githubtitle

	Title

	Text (string)

	githubtype

	Type

	Text (string)

	githubupdatedat

	Updated

	Date & Time

	githuburl

	URL

	Text (string)

	githubrepo

	username/reponame

	Text (string)

	githubuser

	Author of issue/PR

	Text (string)

	githubnamespace

	project namespace

	Text (string)

Gitlab

You can import tasks from your Gitlab instance using
the gitlab service name.

Example Service

Here’s an example of a Gitlab target:

[my_issue_tracker]
service = gitlab
gitlab.login = ralphbean
gitlab.token = OMG_LULZ
gitlab.host = gitlab.com

The above example is the minimum required to import issues from
Gitlab. You can also feel free to use any of the
configuration options described in Common Service Configuration Options
or described in Service Features below.

The gitlab.token is your private API token.

Service Features

Include and Exclude Certain Repositories

If you happen to be working with a large number of projects, you
may want to pull issues from only a subset of your repositories. To
do that, you can use the gitlab.include_repos option.

For example, if you would like to only pull-in issues from
your own project_foo and team bar’s project_fox repositories, you
could add this line to your service configuration (replacing me by your own
login):

gitlab.include_repos = me/project_foo, bar/project_fox

Alternatively, if you have a particularly noisy repository, you can
instead choose to import all issues excepting it using the
gitlab.exclude_repos configuration option.

In this example, noisy/repository is the repository you would
not like issues created for:

gitlab.exclude_repos = noisy/repository

Hint

If you omit the repository’s namespace, bugwarrior will automatically add
your login as namespace. E.g. the following are equivalent:

gitlab.login = foo
gitlab.include_repos = bar

and:

gitlab.login = foo
gitlab.include_repos = foo/bar

Filtering Repositories with Regular Expressions

If you don’t want to list every single repository you want to include or
exclude, you can additionally use the options gitlab.include_regex and
gitlab.exclude_regex and specify a regular expression (suitable for Python’s
re module).
No default namespace is applied here, the regular expressions are matched to the
full repository name with its namespace.

The regular expressions can be used in addition to the lists explained above.
So if a repository is not included in gitlab.include_repos, it can still be
included by gitlab.include_regex, and vice versa; and likewise for
gitlab.exclude_repos and gitlab.exclude_regex.

Note

If a repository matches both the inclusion and the exclusion options, the
exclusion takes precedence.

For example, you want to include only the repositories foo/node and
bar/node as well as all repositories in the namespace foo starting with
ep_, but not foo/ep_example:

gitlab.include_repos = foo/node, bar/node
gitlab.include_regex = foo/ep_.*
gitlab.exclude_repos = foo/ep_example

Import Labels as Tags

The gitlab issue tracker allows you to attach labels to issues; to
use those labels as tags, you can use the gitlab.import_labels_as_tags
option:

gitlab.import_labels_as_tags = True

Also, if you would like to control how these labels are created, you can
specify a template used for converting the gitlab label into a Taskwarrior
tag.

For example, to prefix all incoming labels with the string ‘gitlab’ (perhaps
to differentiate them from any existing tags you might have), you could
add the following configuration option:

gitlab.label_template = gitlab_{{label}}

In addition to the context variable {{label}}, you also have access
to all fields on the Taskwarrior task if needed.

Note

See Field Templates for more details regarding how templates
are processed.

Include Merge Requests

Although you can filter issues using Common Service Configuration Options,
merge requests are not filtered by default. You can filter merge requests
by adding the following configuration option:

gitlab.filter_merge_requests = True

Include Todo Items

By default todo items are not included. You may include them by adding the
following configuration option:

gitlab.include_todos = True

If todo items are included, by default, todo items for all projects are
included. To only fetch todo items for projects which are being fetched, you
may set:

gitlab.include_all_todos = False

Include Only One Author

If you would like to only pull issues and MRs that you’ve authored, you may set:

gitlab.only_if_author = myusername

Use HTTP

If your Gitlab instance is only available over HTTP, set:

gitlab.use_https = False

Do Not Verify SSL Certificate

If you want to ignore verifying the SSL certificate, set:

gitlab.verify_ssl = False

Provided UDA Fields

	Field Name

	Description

	Type

	gitlabdescription

	Description

	Text (string)

	gitlabcreatedon

	Created

	Date & Time

	gitlabmilestone

	Milestone

	Text (string)

	gitlabnumber

	Issue/MR #

	Numeric

	gitlabtitle

	Title

	Text (string)

	gitlabtype

	Type

	Text (string)

	gitlabupdatedat

	Updated

	Date & Time

	gitlabduedate

	Due Date

	Date

	gitlaburl

	URL

	Text (string)

	gitlabrepo

	username/reponame

	Text (string)

	gitlabupvotes

	Number of upvotes

	Numeric

	gitlabdownvotes

	Number of downvotes

	Numeric

	gitlabwip

	Work-in-Progress flag

	Numeric

	gitlabweight

	Weight

	Numeric

	gitlabauthor

	Issue/MR author

	Text (string)

	gitlabassignee

	Issue/MR assignee

	Text (string)

	gitlabnamespace

	project namespace

	Text (string)

Gmail

You can create tasks from e-mails in your Gmail account using the gmail
service name.

Additional Dependencies

Install packages needed for Gmail support with:

pip install bugwarrior[gmail]

Client Secret

In order to use this service, you need to create a product and download a
client secret file. Do this by following the instructions on:
https://developers.google.com/gmail/api/quickstart/python. You should save
the resulting secret in your home directory as .gmail_client_secret.json.
You can override this location by setting the client_secret_path option.

Example Service

Here’s an example of a gmail target:

[my_gmail]
service = gmail
gmail.query = label:action OR label:readme
gmail.login_name = you@example.com

The specified query can be any gmail search term. By default it will select
starred threads. One task is created per selected thread, not per e-mail.

You do not need to specify the login_name, but it can be useful to avoid
accidentally fetching data from the wrong account. (This also allows multiple
targets with the same login to share the same authentication token.)

Authentication

When you first run bugwarrior-pull, a browser will be opened and you’ll be
asked to authorise the application to access your e-mail. Once authorised a
token will be stored in your bugwarrior data directory.

Provided UDA Fields

+———————+———————————–+—————|
| gmailthreadid | Thread Id | Text (string) |
+———————+———————————–+—————|
| gmailsubject | Subject | Text (string) |
+———————+———————————–+—————|
| gmailurl | URL | Text (string) |
+———————+———————————–+—————|
| gmaillastsender | Last Sender’s Name | Text (string) |
+———————+———————————–+—————|
| gmaillastsender | Last Sender’s E-mail Address | Text (string) |
+———————+———————————–+—————|
| gmailsnippet | Snippet of text from conversation | Text (string) |
+———————+———————————–+—————|

Jira

You can import tasks from your Jira instance using
the jira service name.

Additional Requirements

Install the following package using pip:

	jira

Example Service

Here’s an example of a jira project:

[my_issue_tracker]
service = jira
jira.base_uri = https://bug.tasktools.org
jira.username = ralph
jira.password = OMG_LULZ

Note

The base_uri must not have a trailing slash.

The above example is the minimum required to import issues from
Jira. You can also feel free to use any of the
configuration options described in Common Service Configuration Options
or described in Service Features below.

Service Features

Specify the Query to Use for Gathering Issues

By default, the JIRA plugin will include any issues that are assigned to you
but do not yet have a resolution set, but you can fine-tune the query used
for gathering issues by setting the jira.query parameter.

For example, to select issues assigned to ‘ralph’ having a status that is
not ‘closed’ and is not ‘resolved’, you could add the following
configuration option:

jira.query = assignee = ralph and status != closed and status != resolved

This query needs to be modified accordingly to the literal values of your Jira
instance; if the name contains any character, just put it in quotes, e.g.

jira.query = assignee = ‘firstname.lastname’ and status != Closed and status != Resolved and status != Done

Jira v4 Support

If you happen to be using a very old version of Jira, add the following
configuration option to your service configuration:

jira.version = 4

Do Not Verify SSL Certificate

If you want to ignore verifying the SSL certificate, set:

jira.verify_ssl = False

Import Labels and Sprints as Tags

The Jira issue tracker allows you to attach labels to issues; to
use those labels as tags, you can use the jira.import_labels_as_tags
option:

jira.import_labels_as_tags = True

You can also import the names of any sprints associated with an issue as tags,
by setting the jira.import_sprints_as_tags option:

jira.import_sprints_as_tags = True

If you would like to control how these labels are created, you can specify a
template used for converting the Jira label into a Taskwarrior tag.

For example, to prefix all incoming labels with the string ‘jira’ (perhaps
to differentiate them from any existing tags you might have), you could
add the following configuration option:

jira.label_template = jira_{{label}}

In addition to the context variable {{label}}, you also have access
to all fields on the Taskwarrior task if needed.

Note

See Field Templates for more details regarding how templates
are processed.

Kerberos authentication

If the password is specified as @kerberos, the service plugin will try
to authenticate against server with kerberos. A ticket must be already present
on the client (created by running kinit or any other method).

Provided UDA Fields

	Field Name

	Description

	Type

	jiradescription

	Description

	Text (string)

	jiraid

	Issue ID

	Text (string)

	jirasummary

	Summary

	Text (string)

	jiraurl

	URL

	Text (string)

	jiraestimate

	Estimate

	Decimal (numeric)

Megaplan

You can import tasks from your Megaplan instance using
the megaplan service name.

Additional Requirements

Install the following package using pip:

	megaplan

Example Service

Here’s an example of a Megaplan target:

[my_issue_tracker]
service = megaplan
megaplan.hostname = example.megaplan.ru
megaplan.login = alice
megaplan.password = secret
megaplan.project_name = example

The above example is the minimum required to import issues from
Megaplab. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Provided UDA Fields

	Field Name

	Description

	Type

	megaplanid

	Issue ID

	Text (string)

	megaplantitle

	Title

	Text (string)

	megaplanurl

	URL

	Text (string)

Pagure

You can import tasks from your private or public pagure [https://pagure.io]
instance using the pagure service name.

Example Service

Here’s an example of a Pagure target:

[my_issue_tracker]
service = pagure
pagure.tag = releng
pagure.base_url = https://pagure.io

The above example is the minimum required to import issues from
Pagure. You can also feel free to use any of the
configuration options described in Common Service Configuration Options
or described in Service Features below.

Note that either pagure.tag or pagure.repo is required.

	pagure.tag offers a flexible way to import issues from many pagure repos.
It will include issues from every repo on the pagure instance that is
tagged with the specified tag. It is similar in usage to a github
“organization”. In the example above, the entry will pull issues from all
“releng” pagure repos.

	pagure.repo offers a simple way to import issues from a single pagure repo.

Note – no authentication tokens are needed to pull issues from pagure.

Service Features

Include and Exclude Certain Repositories

If you happen to be working with a large number of projects, you
may want to pull issues from only a subset of your repositories. To
do that, you can use the pagure.include_repos option.

For example, if you would like to only pull-in issues from
your project_foo and project_fox repositories, you could add
this line to your service configuration:

pagure.tag = fedora-infra
pagure.include_repos = project_foo,project_fox

Alternatively, if you have a particularly noisy repository, you can
instead choose to import all issues excepting it using the
pagure.exclude_repos configuration option.

In this example, noisy_repository is the repository you would
not like issues created for:

pagure.tag = fedora-infra
pagure.exclude_repos = noisy_repository

Import Labels as Tags

The Pagure issue tracker allows you to attach tags to issues; to
use those pagure tags as taskwarrior tags, you can use the
pagure.import_tags option:

pagure.import_tags = True

Also, if you would like to control how these taskwarrior tags are created, you
can specify a template used for converting the Pagure tag into a Taskwarrior
tag.

For example, to prefix all incoming labels with the string ‘pagure [https://pagure.io]’ (perhaps
to differentiate them from any existing tags you might have), you could
add the following configuration option:

pagure.label_template = pagure_{{label}}

In addition to the context variable {{label}}, you also have access
to all fields on the Taskwarrior task if needed.

Note

See Field Templates for more details regarding how templates
are processed.

Provided UDA Fields

	Field Name

	Description

	Type

	paguredatecreated

	Created

	Date & Time

	pagurenumber

	Issue/PR #

	Numeric

	paguretitle

	Title

	Text (string)

	paguretype

	Type

	Text (string)

	pagureurl

	URL

	Text (string)

	pagurerepo

	username/reponame

	Text (string)

Phabricator

You can import Maniphest tasks from your Phabricator instance using
the phabricator service name.

Additional Requirements

Install the following package using pip:

	phabricator

Example Service

Here’s an example of a Phabricator target:

[my_issue_tracker]
service = phabricator

Note

Although this may not look like enough information for us
to gather information from Phabricator,
but credentials will be gathered from the user’s ~/.arcrc.

To set up an ~/.arcrc, install arcanist and run arc
install-certificate

The above example is the minimum required to import issues from
Phabricator. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Service Features

If you have dozens of users and projects, you might want to
pull the tasks and code review requests only for the specific ones.

If you want to show only the tasks related to a specific user,
you just need to add its PHID to the service configuration like this:

phabricator.user_phids = PHID-USER-ab12c3defghi45jkl678

If you want to show only the tasks and diffs related to a specific project or a repository,
just add their PHIDs to the service configuration:

phabricator.project_phids = PHID-PROJ-ab12c3defghi45jkl678,PHID-REPO-ab12c3defghi45jkl678

Both phabricator.user_phids and phabricator.project_phids accept
a comma-separated (no spaces) list of PHIDs.

If you specify both, you will get tasks and diffs that match one or the other.

When working on a Phabricator installations with a huge number of users or projects,
it is recommended that you specify phabricator.user_phids and/or phabricator.project_phids,
as the Phabricator API may return a timeout for a query with too many results.

If you do not know PHID of a user, project or repository,
you can find it out by querying Phabricator Conduit
(https://YOUR_PHABRICATOR_HOST/conduit/) –
the methods which return the needed info are user.query, project.query
and repository.query respectively.

If your ~/.arcrc includes credentials for multiple Phabricator instances,
it is undefined which one will be used. To make it explicit, you can use:

phabricator.host = https://YOUR_PHABRICATOR_HOST

Where https://YOUR_PHABRICATOR_HOST must match the corresponding json key
in ~/.arcrc, which may include /api/ besides your hostname.

Provided UDA Fields

	Field Name

	Description

	Type

	phabricatorid

	Object

	Text (string)

	phabricatortitle

	Title

	Text (string)

	phabricatortype

	Type

	Text (string)

	phabricatorurl

	URL

	Text (string)

Redmine

You can import tasks from your Redmine instance using
the redmine service name.

Only first 100 issues are imported at the moment.

Example Service

Here’s an example of a Redmine target:

[my_issue_tracker]
service = redmine
redmine.url = http://redmine.example.org/
redmine.key = c0c4c014cafebabe
redmine.user_id = 7
redmine.project_name = redmine
redmine.issue_limit = 100

You can also feel free to use any of the configuration options described in
Common Service Configuration Options.

There are also redmine.login/redmine.password settings if your
instance is behind basic auth.

If you want to ignore verifying the SSL certificate, set:

redmine.verify_ssl = False

Provided UDA Fields

	Field Name

	Description

	Type

	redmineid

	ID

	Text (string)

	redminesubject

	Subject

	Text (string)

	redmineurl

	URL

	Text (string)

Taiga

You can import tasks from a Taiga instance using the taiga service name.

Example Service

Here’s an example of a taiga project:

[my_issue_tracker]
service = taiga
taiga.base_uri = http://taiga.fedorainfracloud.org
taiga.auth_token = ayJ1c4VyX2F1dGhlbnQpY2F0aW9uX2lmIjo1fQ:2a2LPT:qscLbfQC_jyejQsICET5KgYNPLM

The above example is the minimum required to import issues from Taiga. You can
also feel free to use any of the configuration options described in
Common Service Configuration Options.

Service Features

By default, userstories from taiga are added in taskwarrior. If you like to include taiga tasks as well, set the config option:

taiga.include_tasks = True

Provided UDA Fields

	Field Name

	Description

	Type

	taigaid

	Issue ID

	Text (string)

	taigasummary

	Summary

	Text (string)

	taigaurl

	URL

	Text (string)

The Taiga service provides a limited set of UDAs. If you have need for some
other values not present here, please file a request (there’s lots of metadata
in there that we could expose).

Teamlab

You can import tasks from your Teamlab instance using
the teamlab service name.

Example Service

Here’s an example of a Teamlab target:

[my_issue_tracker]
service = teamlab
teamlab.hostname = teamlab.example.com
teamlab.login = alice
teamlab.password = secret
teamlab.project_name = example_teamlab

The above example is the minimum required to import issues from
Teamlab. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Provided UDA Fields

	Field Name

	Description

	Type

	teamlabid

	ID

	Text (string)

	teamlabprojectownerid

	ProjectOwner ID

	Text (string)

	teamlabtitle

	Title

	Text (string)

	teamlaburl

	URL

	Text (string)

Trac

You can import tasks from your Trac instance using
the trac service name.

Additional Dependencies

Install packages needed for Trac support with:

pip install bugwarrior[trac]

Example Service

Here’s an example of a Trac target:

[my_issue_tracker]
service = trac
trac.base_uri = fedorahosted.org/moksha
trac.scheme = https
trac.project_template = moksha.{{traccomponent|lower}}

By default, this service uses the XML-RPC Trac plugin, which must be installed
on the Trac instance. If this is not available, the service can use Trac’s
built-in CSV support, but in this mode it cannot add annotations based on
ticket comments. To enable this mode, add trac.no_xmlrpc = true.

If your trac instance requires authentication to perform the query, add:

trac.username = ralph
trac.password = OMG_LULZ

The above example is the minimum required to import issues from
Trac. You can also feel free to use any of the
configuration options described in Common Service Configuration Options.

Service Features

Provided UDA Fields

	Field Name

	Description

	Type

	tracnumber

	Number

	Text (string)

	tracsummary

	Summary

	Text (string)

	tracurl

	URL

	Text (string)

	traccomponent

	Component

	Text (string)

Trello

You can import tasks from Trello cards using the trello service name.

Options

	
trello.api_key

	Your Trello API key, available from https://trello.com/app-key

	
trello.token

	Trello token, see below for how to get it.

	
trello.include_boards

	The list of board to include. If omitted, bugwarrior will use all boards
the authenticated user is a member of.
This can be either the board ids of the board “short links”. The latter is
the easiest option as it is part of the board URL: in your browser, navigate
to the board you want to pull cards from and look at the URL, it should be
something like https://trello.com/b/xxxxxxxx/myboard: copy the part
between /b/ and the next / in the trello.include_boards field.

[image: ../_images/trello_url.png]

	
trello.include_lists

	If set, only pull cards from lists whose name is present in
trello.include_lists.

	
trello.exclude_lists

	If set, skip cards from lists whose name is present in
trello.exclude_lists.

	
trello.import_labels_as_tags

	A boolean that indicates whether the Trello labels should be imported as
tags in taskwarrior. (Defaults to false.)

	
trello.label_template

	Template used to convert Trello labels to taskwarrior tags.
See Field Templates for more details regarding how templates
are processed.
The default value is {{label|replace(' ', '_')}}.

Example Service

Here’s an example of a Trello target:

[my_project]
service = trello
trello.api_key = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
trello.token = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

The above example is the minimum required to import tasks from Trello. This
will import every card from all the user’s boards.

Here’s an example with more options:

[my_project]
service = trello
trello.api_key = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
trello.token = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
trello.include_boards = AaBbCcDd, WwXxYyZz
trello.include_lists = Todo, Doing
trello.exclude_lists = Done
trello.only_if_assigned = someuser
trello.import_labels_as_tags = true

In this case, bugwarrior will only import cards from the specified boards
if they belong to the right lists..

Feel free to use any of the configuration options described in
Common Service Configuration Options or described in Service Features below.

Service Features

Include and Exclude Certain Lists

You may want to pull cards from only a subset of the open lists in your board.
To do that, you can use the trello.include_lists and
trello.exclude_lists options.

For example, if you would like to only pull-in cards from
your Todo and Doing lists, you could add this line to your service
configuration:

trello.include_lists = Todo, Doing

Import Labels as Tags

Trello allows you to attach labels to cards; to use those labels as tags, you
can use the trello.import_labels_as_tags option:

trello.import_labels_as_tags = True

Also, if you would like to control how these labels are created, you can
specify a template used for converting the trello label into a Taskwarrior
tag.

For example, to prefix all incoming labels with the string ‘trello’ (perhaps
to differentiate them from any existing tags you might have), you could
add the following configuration option:

trello.label_template = trello_{{label}}

In addition to the context variable {{label}}, you also have access
to all fields on the Taskwarrior task if needed.

Note

See Field Templates for more details regarding how templates
are processed. The default value is {{label|upper|replace(' ', '_')}}.

Provided UDA Fields

	Field Name

	Description

	Type

	trelloboard

	Board name

	Text (string)

	trellocard

	Card name

	Text (string)

	trellocardid

	Card ID

	Text (string)

	trellolist

	List name

	Text (string)

	trelloshortlink

	Short Link

	Text (string)

	trelloshorturl

	Short URL

	Text (string)

	trellourl

	Full URL

	Text (string)

VersionOne

You can import tasks from VersionOne using the versionone service name.

Additional Requirements

Install the following package using pip:

	v1pysdk-unofficial

Example Service

Here’s an example of a VersionOne project:

[my_issue_tracker]
service = versionone
versionone.base_uri = https://www3.v1host.com/MyVersionOneInstance/
versionone.usermame = somebody
versionone.password = hunter5

The above example is the minimum required to import issues from VersionOne.
You can also feel free to use any of the configuration options
described in Common Service Configuration Options
or described in Service Features below.

Note

This plugin does not infer a project name from any attribute of the
version one Task or Story; it is recommended that you set the project
name to use for imported tasks by either using the below
Set a Global Project Name feature, or, if you require more
flexibility, setting the project_template configuration
option (see Field Templates).

Service Features

Restrict Task Imports to a Specific Timebox (Sprint)

You can restrict imported tasks to a specific Timebox (VersionOne’s
internal generic name for a Sprint) – in this example named
‘Sprint 2014-09-22’ – by using the versionone.timebox_name option;
for example:

versionone.timebox_name = Sprint 2014-09-22

Set a Global Project Name

By default, this importer does not set a project name on imported tasks.
Although you can gain more flexibility by using Field Templates
to generate a project name, if all you need is to set a predictable
project name, you can use the versionone.project_name option; in this
example, to add imported tasks to the project ‘important_project’:

versionone.project_name = important_project

Set the Timezone Used for Due Dates

You can configure the timezone used for setting your tasks’ due dates
by setting the versionone.timezone option. By default, your local
timezone will be used. For example:

versionone.timezone = America/Los_Angeles

Provided UDA Fields

	Field Name

	Description

	Type

	versiononetaskname

	Task Name

	Text (string)

	versiononetaskoid

	Task Object ID

	Text (string)

	versiononestoryoid

	Story Object ID

	Text (string)

	versiononestoryname

	Story Name

	Text (string)

	versiononetaskreference

	Task Reference

	Text (string)

	versiononetaskdetailestimate

	Task Detail Estimate

	Text (string)

	versiononetaskestimate

	Task Estimate

	Text (string)

	versiononetaskdescrption

	Task Description

	Text (string)

	versiononetasktodo

	Task To Do

	Text (string)

	versiononestorydetailestimate

	Story Detail Estimate

	Text (string)

	versiononestoryurl

	Story URL

	Text (string)

	versiononetaskurl

	Task URL

	Text (string)

	versiononestoryestimate

	Story Estimate

	Text (string)

	versiononestorynumber

	Story Number

	Text (string)

	versiononestorydescription

	Story Description

	Text (string)

YouTrack

You can import tasks from your YouTrack instance using
the youtrack service name.

Example Service

Here’s an example of a YouTrack target:

[my_issue_tracker]
service = youtrack
youtrack.host = youtrack.example.com
youtrack.login = turing
youtrack.password = 3n1Gm@

The above example is the minimum required to import issues from
YouTrack. You can also feel free to use any of the
configuration options described in Common Service Configuration Options
or described in Service Features below.

Service Features

Customize the YouTrack Connection

The youtrack.host field is used to construct a URL for
the YouTrack server. It defaults to a secure connection scheme (HTTPS)
on the standard port (443).

To connect on a different port, set:

youtrack.port = 8443

If your YouTrack instance is only available over HTTP, set:

youtrack.use_https = False

If you want to ignore verifying the SSL certificate, set:

youtrack.verify_ssl = False

Specify the Query to Use for Gathering Issues

The default option selects unresolved issues assigned to the login user:

youtrack.query = for:me #Unresolved

Reference the
YouTrack Search Query Grammar [https://www.jetbrains.com/help/youtrack/standalone/7.0/Search-Query-Grammar.html]
for additional examples.

Queries are capped at 100 max results by default, but may be adjusted to meet your needs:

youtrack.query_limit = 100

Import Issue Tags

The YouTrack issue tracker allows you to tag issues. To apply these tags in Taskwarrior, set:

youtrack.import_tags = True

If you would like to control how these tags are formatted, you can
specify a template used for converting the YouTrack tag into a Taskwarrior
tag.

For example, to prefix all incoming tags with the string ‘yt_’ (perhaps
to differentiate them from any existing tags you might have), you could
add the following configuration option:

youtrack.tag_template = yt_{{tag|lower}}

In addition to the context variable {{tag}}, you also have access
to all fields on the Taskwarrior task if needed.

Note

See Field Templates for more details regarding how templates
are processed.

Provided UDA Fields

	Field Name

	Description

	Type

	youtrackissue

	PROJECT-ISSUE#

	Text (string)

	youtracksummary

	Summary

	Text (string)

	youtrackurl

	URL

	Text (string)

	youtrackproject

	Project short name

	Text (string)

	youtracknumber

	Project issue number

	Numeric

Example Configuration

Example bugwarriorrc

General stuff.
[general]
Here you define a comma separated list of targets. Each of them must have a
section below determining their properties, how to query them, etc. The name
is just a symbol, and doesn't have any functional importance.
targets = my_github, my_bitbucket, paj_bitbucket, moksha_trac, bz.redhat

If unspecified, the default taskwarrior config will be used.
#taskrc = /path/to/.taskrc

Setting this to true will shorten links with http://da.gd/
#shorten = False

Setting this to True will include a link to the ticket in the description
inline_links = False

Setting this to True will include a link to the ticket as an annotation
annotation_links = True

Setting this to True will include issue comments and author name in task
annotations
annotation_comments = True

Defines whether or not issues should be matched based upon their description.
In legacy mode, we will attempt to match issues to bugs based upon the
presence of the '(bw)' marker in the task description.
If this is false, we will only select issues having the appropriate UDA
fields defined (which is smarter, better, newer, etc..)
legacy_matching = False

log.level specifies the verbosity. The default is DEBUG.
log.level can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL, DISABLED
#log.level = DEBUG

If log.file is specified, output will be redirected there. If it remains
unspecified, output is sent to sys.stderr
#log.file = /var/log/bugwarrior.log

Configure the default description or annotation length.
#annotation_length = 45

Use hooks to run commands prior to importing from bugwarrior-pull.
bugwarrior-pull will run the commands in the order that they are specified
below.
#
pre_import: The pre_import hook is invoked after all issues have been pulled
from remote sources, but before they are synced to the TW db. If your
pre_import script has a non-zero exit code, the `bugwarrior-pull` command will
exit early.
[hooks]
pre_import = /home/someuser/backup.sh, /home/someuser/sometask.sh

This section is for configuring notifications when bugwarrior-pull runs,
and when issues are created, updated, or deleted by bugwarrior-pull.
Three backends are currently supported:
#
- growlnotify (v2) Mac OS X "gntp" must be installed
- gobject Linux python gobject must be installed
#
To configure, adjust the settings below. Note that neither of the
"sticky" options have any effect on Linux. They only work for
growlnotify.
#[notifications]
notifications = True
backend = growlnotify
finished_querying_sticky = False
task_crud_sticky = True
only_on_new_tasks = True

This is a github example. It says, "scrape every issue from every repository
on http://github.com/ralphbean. It doesn't matter if ralphbean owns the issue
or not."
[my_github]
service = github
github.default_priority = H
github.add_tags = open_source

This specifies that we should pull issues from repositories belonging
to the 'ralphbean' github account. See the note below about
'github.username' and 'github.login'. They are different, and you need
both.
github.username = ralphbean

I want taskwarrior to include issues from all my repos, except these
two because they're spammy or something.
github.exclude_repos = project_bar,project_baz

Working with a large number of projects, instead of excluding most of them I
can also simply include just a limited set.
github.include_repos = project_foo,project_foz

Note that login and username can be different: I can login as me, but
scrape issues from an organization's repos.
#
- 'github.login' is the username you ask bugwarrior to
login as. Set it to your account.
- 'github.username' is the github entity you want to pull
issues for. It could be you, or some other user entirely.
github.login = ralphbean
github.password = OMG_LULZ

Here's an example of a trac target.
[moksha_trac]
service = trac

trac.base_uri = fedorahosted.org/moksha
trac.username = ralph
trac.password = OMG_LULZ

trac.only_if_assigned = ralph
trac.also_unassigned = True
trac.default_priority = H
trac.add_tags = work

Here's an example of a megaplan target.
[my_megaplan]
service = megaplan

megaplan.hostname = example.megaplan.ru
megaplan.login = alice
megaplan.password = secret
megaplan.project_name = example

Here's an example of a jira project. The ``jira-python`` module is
a bit particular, and jira deployments, like Bugzilla, tend to be
reasonably customized. So YMMV. The ``base_uri`` must not have a
have a trailing slash. In this case we fetch comments and
cases from jira assigned to 'ralph' where the status is not closed or
resolved.
[jira_project]
service = jira
jira.base_uri = https://jira.example.org
jira.username = ralph
jira.password = OMG_LULZ
jira.query = assignee = ralph and status != closed and status != resolved
Set this to your jira major version. We currently support only jira version
4 and 5(the default). You can find your particular version in the footer at
the dashboard.
jira.version = 5
jira.add_tags = enterprisey,work

Here's an example of a phabricator target
[my_phabricator]
service = phabricator
No need to specify credentials. They are gathered from ~/.arcrc

Here's an example of a teamlab target.
[my_teamlab]
service = teamlab

teamlab.hostname = teamlab.example.com
teamlab.login = alice
teamlab.password = secret
teamlab.project_name = example_teamlab

Here's an example of a redmine target.
[my_redmine]
service = redmine
redmine.url = http://redmine.example.org/
redmine.key = c0c4c014cafebabe
redmine.user_id = 7
redmine.project_name = redmine
redmine.add_tags = chiliproject

[activecollab]
service = activecollab
activecollab.url = https://ac.example.org/api.php
activecollab.key = your-api-key
activecollab.user_id = 15
activecollab.add_tags = php

[activecollab2]
service = activecollab2
activecollab2.url = http://ac.example.org/api.php
activecollab2.key = your-api-key
activecollab2.user_id = 15
activecollab2.projects = 1:first_project, 5:another_project

[my_gmail]
service = gmail
gmail.query = label:action OR label:readme
gmail.login_name = you@example.com

How to Contribute

Setting up your development environment

First, make sure you have the necessary Requirements.

You should also install the virtualenv [https://pypi.python.org/pypi/virtualenv] tool for python. (I use a wrapper
for it called virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper] which is awesome but not
required.) Virtualenv will help isolate your dependencies from the rest of
your system.

$ sudo yum install python-virtualenv git
$ mkdir -p ~/virtualenvs/
$ virtualenv ~/virtualenvs/bugwarrior

You should now have a virtualenv in a ~/virtualenvs/ directory.
To use it, you need to “activate” it like this:

$ source ~/virtualenv/bugwarrior/bin/activate
(bugwarrior)$ which python

At any time, you can deactivate it by typing deactivate at the command
prompt.

Next step – get the code!

(bugwarrior)$ git clone git@github.com:ralphbean/bugwarrior.git
(bugwarrior)$ cd bugwarrior
(bugwarrior)$ python setup.py develop
(bugwarrior)$ which bugwarrior-pull

This will actually run it.. be careful and back up your task directory!

(bugwarrior)$ bugwarrior-pull

Making a pull request

Create a new branch for each pull request based off the develop branch:

(bugwarrior)$ git checkout -b my-shiny-new-feature develop

Please add tests when appropriate and run the test suite before opening a PR:

(bugwarrior)$ python setup.py nosetests

We look forward to your contribution!

Works in progress

The best way to get help and feedback before you pour too much time and effort
into your branch is to open a “work in progress” pull request. We will not leave
it open indefinitely if it doesn’t seem to be progressing, but there’s nothing to
lose in soliciting some pointers and concerns.

Please begin the title of your work in progress pr with “[WIP]” and explain what
remains to be done or what you’re having trouble with.

FAQ

Can bugwarrior support <some issue tracking system>?

Sure! But our general rule here is that we won’t write a backend for a service
unless we use it personally, otherwise it’s hard to be sure that it really
works.

We also try to rely on people to become maintainers of the different backend
plugins they use so that they don’t suffer bit rot over time.

In summary, we need someone who 1) uses <some issue tracking system> and 2) can
develop the plugin. Could it be you? :)

Index

 B
 | E
 | X

B

 	
 	BUGWARRIORRC

E

 	
 	
 environment variable

 	BUGWARRIORRC, [1]

 	XDG_CONFIG_DIRS, [1]

 	XDG_CONFIG_HOME, [1]

X

 	
 	XDG_CONFIG_DIRS

 	
 	XDG_CONFIG_HOME

 _static/ajax-loader.gif

_images/bugwarrior1.png
“build passing

_images/trello_url.png
https://trello.com/bA2L Q00D testboard

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/bugwarrior.png
“build passing

_static/file.png

nav.xhtml

 Table of Contents

 		
 Bugwarrior

 		
 Getting bugwarrior

 		
 Requirements

 		
 Installing from the Python Package Index

 		
 Installing from Source

 		
 Installing from Distribution Packages

 		
 How to use

 		
 Cron

 		
 systemd timer

 		
 Exporting a list of UDAs

 		
 How to Configure

 		
 Common Service Configuration Options

 		
 Field Templates

 		
 Password Management

 		
 Hooks

 		
 Notifications

 		
 Configuration files

 		
 Environment Variables

 		
 Supported Services

 		
 ActiveCollab 4

 		
 Additional Requirements

 		
 Instructions

 		
 Example Service

 		
 Provided UDA Fields

 		
 ActiveCollab 2

 		
 Instructions

 		
 Example Service

 		
 Provided UDA Fields

 		
 Bitbucket

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Debian Bug Tracking System (BTS)

 		
 Additional Requirements

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Bugzilla

 		
 Additional Dependencies

 		
 Example Service

 		
 Provided UDA Fields

 		
 Gerrit

 		
 Example Service

 		
 Provided UDA Fields

 		
 Github

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Gitlab

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Gmail

 		
 Additional Dependencies

 		
 Client Secret

 		
 Example Service

 		
 Authentication

 		
 Provided UDA Fields

 		
 Jira

 		
 Additional Requirements

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Megaplan

 		
 Additional Requirements

 		
 Example Service

 		
 Provided UDA Fields

 		
 Pagure

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Phabricator

 		
 Additional Requirements

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Redmine

 		
 Example Service

 		
 Provided UDA Fields

 		
 Taiga

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Teamlab

 		
 Example Service

 		
 Provided UDA Fields

 		
 Trac

 		
 Additional Dependencies

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Trello

 		
 Options

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 VersionOne

 		
 Additional Requirements

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 YouTrack

 		
 Example Service

 		
 Service Features

 		
 Provided UDA Fields

 		
 Example Configuration

 		
 How to Contribute

 		
 Setting up your development environment

 		
 Making a pull request

 		
 Works in progress

 		
 FAQ

 		
 Can bugwarrior support <some issue tracking system>?

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

